First try:



$$O(n)$$
? No!  
Permember,  $L(:) = \exp(\Theta(n))$  is 2  $\Theta(n)$ -dignt number!  
 $O(n^2) = n$  steps x  $O(n)$  time per step  
300 n-dignt number  
B:t complexity model: b:t(digit ops take O(1) time.  
 $t = 0-9$   
x  $-0-9$ 

Word RAM model:  
"resentile ops"  

$$K = Word length$$
  
 $W = Word length$   
 $W = Word length$   
 $W = Word length$   
 $W = Word length$   
 $M = Word length$   
 $M = Word length$   
 $M = W = GH, maybe for lod's tops.$   
 $H's reasonable to assume$   
 $Vill do hereforth$   
 $\log(n) \leq W.$   
 $Weess stated otherwise$   
 $Vill do hereforth$   
 $\log(n) \leq W.$   
 $Weess stated otherwise$   
 $M \leq W.$   
 $Eeep Steve out!$   
 $M \leq W.$   
 $M \leq W$ 

Buy Sell 
$$\Rightarrow 1$$
 2 3 4 5 6 7  
1 0 4 -4 1 9 -7 5  
2 0 -8 -3 5 -11 1  
3 0 5 13 -3 9  
4 0 8 -8 4  
0 -16 -4  
6 0 12  
7 0  
Best: 0 4 0 5 13 0 12  
Time: O( $n^2$ ) (for each is, counte L(i)-L(i))  
How to improve?  
[des: What do we need to know for Belt(i)?  
Best(i) = Max L(i)-L(i) = L(i)-min L(i)  
it(i)  
Towardsin

Faster 240, take 1:  
(1) Pass over list, Maintain running min.  
e.s. 
$$8 12 4 9 17 1 13$$
  
MinUp To  $8 8 4 4 4 1 1$   
MinUp To  $(3) = min L(1)$   
(2) Compute all Best  $(1) = L(2) - MinUp To (3)$   
Both Areps O(11) time.  $MinUp To (3-1), L(3)$   
MinUp To  $(3) = min (MinUp To (3-1), L(3))$   
Memoized

First try: 
$$grt_{2}$$
  
 $1 25 -35 -28 -41 -11$   
 $2 -60 -53 -66 -36$   
 $3 7 -6 24$   
 $4 -13 17$   
 $5 30$   
Notice:  $O(n^2) \times O(n) = O(n^3)$   
 $+ suppodure + tre(sdoproduce)$   
Better:  $O(n^2) \times O(1) = O(n^2)$   
 $proceed row$   
 $by row, bett-to-right.$ 

$$\sum_{k=i}^{j-1} L(k) = \sum_{k=i}^{j-1} L(k) + L(j)$$

$$k=i$$
Nemoized

feursue formula: